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Abstract 

The frequency distribution of a crystal is approximate! by 

combining Van Hove's determination of its analytical nature and 

Montroll's method of moments. The function G(^ ) is represented 

by an expression with the correct behavior at the singularities and 

at the maximum and minimum frequencies. The behavior between singular 

points ia adjusted smoothly by leaving n undetermined parameters. 

These parameters are then fixed by using the correct first n moments. 

As a test, this procedure was applied to fhe  two dimensional square 

lattice with nearest and next nearest neighbor interactions, solved 

exactly for a particular case by Montroll.  The approximated 

distribution function had the right form at the end points, contained 

terms of the appropriate logarithmic form and a jump function (with 

known coefficients).  It also included Legendre polynomials with 

unknown coefficients, which were determined by the moments. The 

difference between the exact and approximate distribution functions 

was a few per cent using only the zeroth moment (normalization). 

Using higher moments produced a gradual increase in accuracy. 

—.r 



Introduction 
i fa 

The normal rcodes of a  lattice are eigen-vectors of a matrix M, ,       , 
*• J 

denoted simply by M, where i,j ore indices of the cell, and * , $ 

are indices of particles in a cell. Using the translational symmetry 

of the lattice, the problem is customarily reduced to the diagonaliza-1;.: 

of a matrix M    (k), denoted briefly by M(k), where k is the 

propagation constant of the wave, and the index <y (or ^ ) takes on 

)i"2-    different values, where Jl    is the dimension of the space and 2 

the n'imber of atoms per cell. The coefficients of M(k) are periodic 

functions of k, with the periodicity of the reciprocal lattice. 

The normalized density of eigenvalues  V associated with the 

matrix M can be defined by 

G( S)2) =  < J"( ^  - M)> (1) 

where the average of a matrix,  <_ / , is the trace of that matrix 

divided by its dimensionality. Using the uniform spacing of the 

propagation constant over one Brillouin zone, eq. (l) can be reduced t. 

G(N)
2
) =     (  <( v2 - M(k)>dk/ fdk (2) 

where 

< ( v2-M(k))^ - trace   f( V 2-M(k))/£?   « (lij't^ fity) 

The relation between the frequency distribution function       and 

2 
the distribution function of the squares of the frequency G( V ), is: 

itegral in (2) cannot be 

12 3 **• for a few special cases ' ' many approximate methods have been use I 

I- \ 

Since the integral in (2) cannot be evaluated explicitly except 

k 

S. W. MontroT! , J. Chem. Fhys. 15, 5 (D  (19*7) 

A  discussion of some of the methods together with references is gi 
by ,'.. C. fieuzies, Repts. Prog. Phys. 16, 83 (195J). 

V, A. BowcrJ and H. B, Rosenstock, J. Chem. Fhys. 18, IO56 (1950). 
t3 G. T. Newel J., J. Chem. Phys. 21, 1877 (1953). 

b'. B. Rosenstock, J. Chem. Phys. 21, 206U (1953). 
E. fl. Rosenstock and Gordon F. Newell 21, I607 (1953). 
H. B. Rosenstock and H. M. Rosenstock 21, 1608 (1953). 
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to study Q()>).    Blackman approximates ^(l^by calculating the 

frequencies at a large number of points in the Brillouin zone and 

finding their distribution. Th<<; rsquirefc a great deal of labor, wfaiou 

6 
has to be repeated for every set cf force constants. Houston finds 

the distribution along special lines in reciprocal space and interpolrtf 

for the rest of the Brillouin zone. This method introduces some 
7 A Q 

spurious singularities in £7^  •  We shall discuss Montroll's ' mcuent 

method in some detail as it forms part of the basis of our work. 

Using (l) the nth moment of G(x) is given by 

mn = jx
nG(x)dx =<Mn> (k) 

or taking explicitly the average over the propagation constant as in (2) 

•n * S ^^dk/ (dk (5) 

Montroll was the first to recognize that the moments,Ti\     are easily 

computed from traces at powers of M(k) via (5). He showed that the first 

N moments can be used to construct the best approximate distribution 

function in the sense of least squares, if the approximating function 

can be expressed in a power series or a polynomial series contain N 

terms. " For these two choices of expansion, the least squares criterion 

10 

U 

*? M. Blackman, Repts. Prog. Phys. 8, 11 (19M). 
6 W. V. Houston, Rev. Mod. Phys. 20, 16] (19U8). 
7 T. Nakamura, Prog. Theor. Phys. 5, 213 (1950). 
° E. W. Montroll, J. Chem. Phys. 10, 21b (19^2). 
I    E. W. Montroll, J. Chem. Phys. 11, k&l  (19^3). 

T. H. Walnut, J. Chem. Phys. 22, 692 (195*0, calculates the mome.-ts 
directly from M. 
The use of polynomials as expansion functions will always lead t > 
the same result as the use of a power series, for the same number 
of terms. The use of orthognnl polynomials greatly simplifies the 
arithmetic. 



is equivalent to the requirement that the first N momenta of the 

12 
approximating and exact distribution agree.   The ute of converge (_e 

of such an expansion is determined by the smoothness of the exact 

function.  Hence if G(x) is smooth, the use of even a few moments could 

be expected to give a good approximation. //However, it was found by 

1 
Montroll  when ht lid an exact calculation for a two-dimensional 

square lattice, with nearest and next nearest neighbor interactions, 

that the frequency distribution function was not smooth but contained 

13 two logarithmic singularities.  Smollett  extended Montroll's result to 

the case of  a two-dimensional ionic lattice, taking into account t:.e 

long range Coulomb forces between ions.  Simile- results were obtained 

2 
by Bcwers and Rosenstock for the frequency distribution of vibrations 

Ik 
perpendicular to the plane of the lattice. Van Hove  subsequently 

showed that these singularities, far from being accidental, are a 

necessary consequence of the periodic structure of the lattice. They 

occur at the critical points cf»   , points at which \ grad x^[k)( = 0. 

In two dimensions G(x) will have at least one logarithmic singularity. 

In three dimensions there will be at least three critical points x , 
c 

where while G(x) remains continuous, its derivative G (x ) has an 
c 

inverse square root singularity. 

12 
If an expansion is made in functions oth<=r than polynomials, e.g. a 
Fourier series, the method of equating moments and the least squ res 
method are distinct for finite N. While knowledge of the first li 
moments determines a Fourier expansion to N terms, if the momeit 
conditions are applied, this knowledge is insufficient to lead zo 
a least squares solution. 

13 M. Smollett, J. Chem. Phys. 15, 575 (19^7) 

lk    L. Van Ht.ve, Fhys. Rev 89, H89 (1953)- 
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TT" These considerations show that an approximating function Gn(x) which 

is smooth, such as a linear combination of polynomials whieh has the 

correct first N moments, would converge slowly to C-(x) with increa:3i :g 

N. Hence a large number of moments, and a corresponding large aroo1 t 

of labor, would be needed to get a good fit to G(x). 

We decided, therefore, to take explicitly into account the anclytic 

nature of G(x) in constructing GB(x).  G&(x) is represented by an 

expression with the correct behavior at the singularities and at the 

end points. The behavior between singular points is adjusted smoothly 

15 by leaving n-undetermined parameters to be adjusted by the moments. 
. 

In this way the moments are used for approximating a smooth function so 

that good agreement to G(x) might be expected, even when, only a small 

number of moments are used.  Essentially the same procedure was 

16 
suggested independently by Poscnstock,  who applied it to the body- 

centered and face-centered cubic lattices.  See Section III for further 

discussion of Rosenstock's results. 
II.  Two Dimensional Square Lattice 

As a test, this procedure, which we call the moment-singularity 

method was applied to a two-dimensional . monatomic square lattice with 

neighbor and next neighbor interactions.  The distribution function 

obtained by this procedure will be compared:  (a) with the exact 

distribution calculated by Mentroll,  (b) with the distribution obtained 

by the unmodified method of moments. 

IT For this lattice M(k) is a two by two matrix 

(t-l)C1-tC1C2+l tS-jSp  ] 
M(k) =1/2 J (o) 

V ts1s2      i+(t-i)c2-tc1c2/ 
-1 

where Ci  = cos k±.  St  =  sin ki; i = 1,2, t = {l+i(/2V   )  . * and  ^ 

** The fitting between singular points may also be done by any other 
method, e.g. Blackman's which yields sufficiently accurate results 

av%y from the singularities. 
H. B. Rosenstock, On Counting Lattice Frequencies, Bull. Amer. PI: ;•. 
Sac,Vol. 29, No. h,  I 10. 2 

' For comparison with notation in reference l:ki -> $i, x -* f , 
G(x) ~> (2f)-l \)^ 9f(?)  w<2 measure the frequency in such units tiiat 
the largest frequency    y> = 1. 
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are neighbor and next neighbor forces respectively.  The two r^cts uf 

the secular equation are (7) 

X± = 1/k   ^2t(l-C1C2) + (l-t)(2-C1-C2)t>'[l+t  S1
2S2

2+(l-t)2(C1-C2)
2] H 

The nth moment of G(x) can be found from (5) by integrating the troc^ 

M^k) ever the Brillcuin zone, -n *• kj_, ko ^ «, and dividing the *-esul<- 

2 
by 2(2n) . Thus, the first moment    , , is (8) 

m = (8* )_1  dkj  dk i   2-(l-t)(cos k^+cos k2)-t cos kj/cos k<- !. =1/2 i ;.n      y_n     2 |  _ ; 

Montroll has calculated the first six even moments /i^n °f Q ( V )> In 

a slightly fiifferent way. These are related to the 'Yf\      by 
A (1 

U2n - )0 ^^ g< V >d>>  " \/G(x)dx =yfin (c) 

and their values are 

-m0 -1, m1 = 1/2, 7n2 = IA + d-t)2 + i. u°) 

7fi3 = 1/8 + 3 [(1-t)2 + t2j   /16 _a 

7f). = 1/16 + (3/16) f(l-t)2 +t2] + (3/128) [(l-t)2+t2j + 

+ (5/128) [ (l-t)2t2J 

VTic = 1/102U(U62 - 980 t+960 t2-265 tJ+80 t -5r) 
10 

An explicit form for all higher moments was found by T. H. walnut. 

Due tc the symmetry of the problem it is sufficient to work in 

one quadrant of the Brillouin zone, 0 - k,, luf n.  In this quadrant 

the critical points of x t (k) are at, (k^k^.) = (0,0), (0,JT), (*,0), 

(*,n) when 0 <-t   S 1/5- (11) 

The values of x, In the two branches x t (k), at these critical points 

are (C, 1, 1, 1-t) and (0, t, t, 1-t) jespectively. For t greater 

than 1/5 but less than l/2,  the x+ branch has one additional critic; 1 

point at £cos  (t-l/Ut), cos"1 (t-l/Vt)J and the value of x+(k) at thai 

point is (1 + 3t)2/(l6t). 

18 we shall assume as did Montroll in ref. 1 that t £-   1/2. 

-5- 



From the behovior of x+(k) in the neighborhood of the critical 

points in reciprocal space it is possible to deduce the forn of G(x) 

near the critical values of x, ° Including the value of G(0) and G(l). 

If the singular part of C(x) is called F(x), then it can he shown th- t 

(1-    . 
iBJ.nlx-tl    +B2 «n |x-(l-t)|      +BH(x-(l-t)   ),  OUtl/5 

F(x)  .*    L ] 
(C^Lnlx-tl +C2tn (x-(l+3t) /l6t(  +C3H(x-(l-t) ), l/5<£t-l/2 

where H is the Heaviside unit function H(y) =0, y <£- 0, H(y) = 1, f.r 

y > 0, and (12b) 

Bl  - -[t(l-2t)j '^prfi,  B2 = -(l-3t)Lt(l-t)(l-2t)(l-5t)J"
1/"/n2 

B = -(2/(tit2) )[ ae-j (l-3t)/t+(l+k2 sin2©)1/2] "l,  k2=(3t2-2t+l)/t2 

Cx = - [t(l-2t)j-V2/n2; C2 = [l6t/*5(l-t)' [" 3(5t-l)( 3t+l)j " *' 2 

c3 = (l-3t) [t(i-t)(i-2t)(5t-i)J '1/2 

The value of G(x) at 0 and 1 is 

0(0) = (1+t) [t(l-2t-3t2)^] "l/2/«j 0(1) = t"l/2/n (12c) 

In order to apply the moment-singularity method we subtracted F(x) 

from G(x) and approximated the remainder by a linear combination of 

n Legendre polynomials. The first n-2 coefficients of the expansion 

are determined by the requirement that first n-2 moments of the 

approximate function agree with the exact ones. The remaining two 

coefficients are then determined by fixing the end points. Hence, 

N 
when R moments are known, the approximate distribution function GG {.)   is: 

Gn
(N)(x) = F(x) + f   A<N)P.(2x-l), 0 * x * 1 (l3a) 

D kTo K  k 

where 

A^N)' = (2k+l)| \    Pk(2x-l)G(x)dx- (  Pk(2x-l)F(x)dx (13b) 

I-'0 Jn -' 

19 
For a discussion see Section III of this paper, also Van Hove, 
reference (lM sections II and III. For comparison see Montroll, 
reference 1. 

! 



I 

for k 4 N-l 

and 

A 

l-DV"1  H   (-ir-VW B G(0)   - F(0)   -   >     (-1)    A 

(i:0 

N-. 1 i -0 (u) 
Note th*it Au. '   is independent oi iN    the order cf the approximation. 

A(N) „ A(cr ) fo?; k 6 
k    <<: 

When tho unmodified method of moments is used to approximate G(x), 

(N) 
the approximation function, when N moments are known, G  (x) is 

4!}M  -  !f »f  FV«^-D ' (1*) 
(N)    MG 

the B^  are- again given by eq. 03^) with F(x) set equal to zero. 

A numerical evaluation of the AA ' and the B.   was made for t = 1/3. 

1 17 This is the value of t for which Montroll '  evaluated G(x) in a 

closed form, so that comparisons can be made. This will indicate how 

useful the moment-singularity method is. 

For t = 1/3, eqa. (12) and (13) yield 

GN(x)  =  -3/rt2   in I x-1/31   -h/n2 yfcn /x-3/M   +£   A[
N)

P,(2X-1) 

G(0)   = 2/,t;   G(l)   =  (3)l/2/n 
(N) 

The values cf the Ak in different orders of approximation N 4 6 are 
/«T\ 

summarized in table 1. The values of the B^ ', which are independent of 

N, are BQ = 1, B±  = 0, Bg = -.1*167, B3 = 0, B = -.2269, B$ = -.2290 (16) 

Comparisons between G(x), G (x), G (x) are presented in tables 2, 3, and 

k. 

III. Conclusion 

As can be seen fri m Table k   use of the non-singular method of 

moments results in a great increase in the accuracy of the approximation 

ever the usual method of momenTs for the same number of moments. 

-7- 
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The additional work required to find F(x) was small, for t = l/3- 

For the particular value of t, x.-(k) can be expanded in a Taylor seii u 

near the critical points, and the behavior of G(x) near the cri-cical 

points can be read off directly from Van Hove. For other values of t, 

the critical points (0, 0), (it, IT) are of the type which Van Hove 

calls generalized critical points. The behavior of x-(k; near thece 

points  is 

1 

•     • '• -kc x(k)  =xc  +|  5|   ^    (f/ISI     )  + 0(\f|3    ),   f Al 
To find the form of G(x) near these points the integral in (2) has to be 

evaluated, neglecting terras of 0( |^( ). Transforming to polar coordinates 

in reciprocal space the integration over the radial variable, can be 

done immediately by means of the delta function. This leaves an 

integration over the angle variable whose evaluation may be quite 

difficult, if it cannot be f und in the tables. The integral 

representing B in eq. (;ib) is one such case. 

However even when the exact form of the singular part of G(x), 

such as the coefficient multiplying the logarithm terms in two dimensions, 

or the square root terns in three dimensions, is not knownyconverge'ce 

would be improved greatly if the approximating function contained terms 

of the correct singular form. The coefficients of these terms coul" 

then be determined by the moments. Thus, for the case considered in 

this paper, it would have been preferable if the approximating function 

G (x) consisted of polynomials multiplying the logarithmic terms whose 
a 

value at the critical points is the correct one. This would have 

taken account of terms in the distribution function of the form 

(x-Jfclni I X-XQ(   . A smaller number of moments might then have been used 

to obtain the same accuracy. This was not done because of the extra 

-8- 



work involved in solving simultaneous equations for \.he coefficients 

of the multiplying polynomials since no orthognal set would be avail'-. 1 

In general the amount of work required to find more moments has to be 

balanced against the work involved in solving simultaneous equations. 

20 
There is a theorem of Feynman  which is useful in finding some 

critical points without diagonalizing M(k). This theorem states, if 

A( <* ) ¥ ( i* ) = \( * ) V ( <* ), A( 4 ) is hermitian. 

Then 

ax<*>   = (y tap, dAl±>  <y(±)) 
2 

Thus \   grad i^ (k) I = 0 whenever I grad M(k) I = 0. This car: happen 

only at those k, where all the branches have critical points 

simultaneously. 

A great difficulty, in many cases, in*finding the analytic form 

of the distribution, is the location of all the critical points. 

Van Hove's arguments predict only the minimum number of critical pointc 

but give no upperbound.  It is generally easy to find those which are at 

symmetry points of the Brillouin zone.  In most cases investigated thus 

1,2,3 
far     these are the only critical points.  This might be due to tue 

assumption made in '•-hese cases that the forces are short range. The 

number of critical points might be expected to increase with the range 

of the interaction and their location is then more likely to be at non- 

symmetry points of the zone.  Rosenstock  has devised a method for 

examining the presence of critical points inside the zone from the 

behavior of  V* (k) on the boundary. 

For three dimensions, with short range forces, when the critical 

points are at the symmetry points the matrix M(k) is easy to diagonalize 

20 <?      ,  / R. P. Feynman, Phys. Rev. 56, 3'tO (1939). 



at those points to find the critical frequencies. To find the exact 

form of the distribution near the critical points x , degenerate 
c' 

perturbation theory has to be used to find the eigenvalues in the 

vicinity of k,. However, since in three dimensions G(x) does not 

become infinite at x it might be sufficient to use the right form of 

G(x) near x , the coefficients of the singular part would then be 

determined by the moment as mentioned abovt. This would agree with 

the results of Rosenstock. 

• 10- 



Table 1 

N 
Value of the coefficients of A^ of the Legendre polynomials 

in the expansion of the non-singular part cf distribution function. 

»\k 
Ao AN Al 

N 
A2 

N 
A3 

N 
A5 

N 
A6 

N 

''7 
G(l) -.1306 -.1599 .1568 

0^ -.1306 -.2620 .1568 .1021 

G(3) -.1306 -.2620 .11+09 .1021 .0159 

0<*> -.1306 -.2620 .11+09 .1383 • 0159 -.0368 

C
(5» -.1306 -.2620 .11+09 .1388 .0536 -.0368 -.0378 

G(fa) -.1306 -.2620 .11+09 .1388 .0536 -.0U29 -.0378 .0061 



Table 2 

(Nt   2 
Convergence of the manent-singularity approximation G * '( V ) to the 

exact distribution G( \)    )  with increasing N.  (N is the number of 

moments used.) 

; /,F(V
2
) c£hh #>(f, oi3)(V

2) a^'ofi a<5>< /) o[6\ „2) G(/; 

0' .^50: .637 .637 .637 .637 .637 .637 .637 

.05 .528 .653 .697 .689 .670 .687 .689 .633 

• 1 .620 .689 .763 • 752 .73U .739 • 739 .7^0 

• 3 1.36 1.25 1.3^ 1.3k 1.36 1-35 1.35 1.3* 

1/3 60 CD CD CP CO GO CD GO 
.1* 1.25 1.08 1.12 1.1k 1.16 1.17 1.18 1.17 

.5 1.11 .897 .897 .911 .911 • 937 • 937 • 951 

.6 1.17 .939 .890 .901 .879 .891 .887 .908 

• 7 1.52 1.28 1.20 1.20 1.17 1.16 1.16 1.14 

.75 CP <£> CP CO CD CO 00 CO 1 • 9 .9^2 • 755 .682 .671 .688 •   .691+ .695 .733 

• 95 .799 .637 • 599 .585 .60U .621 .619 .63: 

1 .685] • 551 • 551 .551 • 551 • 551 .551 .551 



Table 3 

(N), S2N 
Convergence of the unmodified racment approximation G  i, V ),  to the 

2 
exact distribution G( ^) ) with increasing N.  (N is the r.unber r_f 

moments used.) 

V>a,^'(v2))^^2'^3^5)^'' /)^5)(v2)^6)(/)|o( v2) 

0 l •583 

.05 l .702 

.1 l .808 

.3 l 1.11 

1/3 T^ 1.14 

.k 1 1.18 

.5 1 1.21 

.6 1 1.18 

• 7 i 1.11 

• 75 1 1.05 

• 9 1 .808 

• 95 1 .702 

l 1 .583 

• 332 .103 .637 

.655 .646 .683 

.861 • 770 ,74c 

1.13 1.20 1.3* 

1.14 1.21 CD 

1.13 1.20 1.17 

1.12 1.12 .951 

1.13 1.06 .908 

1.13 1.07 l.ll« 

1.12 1.09 CD 

.861 • 953 .73: 

.655 .664 .631 

.332 .561 • 551 



Table k 

Ccnparisun .f  the unn.difiec1 nuoent approximation G  (^J ), the 

6  2 
raonent singularity approximation G (^ ), and the exact distrilutii_i 

2 
G( V )> '^hon six ncuents are used. 

G,(.6)(x) Gf
}(x)        G(x) 

0 .103 • 637 .637 

/"* ~ .ehe .639 .683 

.1 • 770 .739 .7^0 

• 3 1.20 1.35 1.3U 

1/3 1.21 00 CP 

A 1.20 1.18 1.17 

• 5 1.12 .937 • 951 

.6 1.06 .887 .908 

.7 1.07 1.16 1.1U 

• 75 1.09 60 CO 

• 9 • 953 .695 .733 

• 95 .66k .619 .631 

1 .561 .551 .551 
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